GQFd80型桥梁伸缩缝装置选型指南
GQFd80型桥梁伸缩缝装置选型指南
XF单组式桥梁伸缩缝
XF 单组式桥梁伸缩缝结构特点与功能
XF 单组式桥梁伸缩装置是适用于设计荷载为汽超 20 挂超120 *的直桥、弯桥、斜桥、坡桥等公路和城市桥梁。产品由钢质边梁、鸟形橡胶密封条和锚固构件组成。在桥梁梁体因温差等因素引起位移时,机械固定在边梁沟槽中的橡胶密封条能自由折迭伸缩。起到防水防尘作用。行驶车辆的冲击力,通过边梁和焊接的锚固构件传递到桥梁结构中。该型伸缩缝适用于伸缩量 0~80mm 的桥梁。
鸟形橡胶密封条
主要材料
1、鸟形橡胶密封条根据桥宽,整条采用氯丁或三元乙丙橡胶制作,具有良好的耐老化、耐曲挠性能。适应桥梁梁端 水平、横向、竖向变形,伸缩阻力极小。
2、钢质边梁采用 16Mn 精轧而成,锚固板及Φ16锚固筋具有良好的机械性能。作用于边梁上的车辆冲击力,通过锚固构件均衡的传递到梁体上,有很长的使用寿命。
伸缩缝装置位移量
伸缩缝装置位移量,简称伸缩量,伸缩缝装置位移量的确定是设计图纸生成过程中比较重要的*部分,伸缩缝装置位移量直接影响到今后桥梁使用寿命,及桥梁性能实现。
伸缩缝装置位移量的影响因素
因素*:温度变化是影响桥梁伸缩缝的伸缩量之重要因素
温度变化是影响伸缩量的主要因素。由于我*幅员广大,温差悬殊、变差幅度各地不*,兹推荐下列数据供设计参考使用。由于温度使桥梁内部温度分布不均匀会引起大跨径桥梁端部产生角变位,*般跨径比值较小,可不予考虑;大跨径桥梁,设计时应予考虑。
因素二;混凝土的徐变和收缩
如果桥梁的钢筋混凝土桥及预应力混凝土桥需考虑其徐变及收缩。徐变量按梁在预应力作用下的弹性变形乘以徐变系数¢=2求得。收缩量以温度下降20℃来换算。应当考虑安装时混凝土的徐变和收缩已完成的部分,为此应将全部徐变和收缩量乘以折减系数ß。下列ß值供设计时参考。 徐变的龄期是以施加预应力后的时间计算,收缩是以浇筑混凝土以后到安装时的全部龄期计算,设置伸缩装置后施加的预应力需另加。
因素三:各种荷重所引起的桥梁挠度
活载、恒载等会使桥梁端部发生角变位,而使伸缩装置产生垂直、水平及角变位。如果梁比较高,且伴有振动的情况,应格外注意。由于加宽桥面而要设置纵向伸缩装置时,由于跨中挠度较大,还应注意在振动时变位随时间变化的相位差。
因素四:地震影响使构造物发生变位
地震对伸缩装置的变位影响比较复杂,目前还难以把握,在设计伸缩装置时*般不予考虑;但如有可靠资料能算出地震对桥梁墩台的下沉、回转、水平移动及倾斜量时,在设计时给以考虑当然更好。
因素五:纵坡对变位的影响纵坡较大的桥,通常施工时把活动支座作成水平的,因而在支座位移时在路面产生了*个垂直差(△d),其值为水平位移乘以纵坡(tgθ),在变位较小的情况下可不予考虑,但对组合钢桥变位大且纵坡也大的情况下,设计伸缩装置的形式就应认真对待。
因素六:斜桥及曲线桥的变位
斜桥及曲线桥在发生支承移动方向的变位△L时,便有在桥端线方向的变位△S及垂直于桥端线方向的变位△d:
△d=△L sinθ △S=△L cosθ
式中:θ-倾斜角;△L-伸缩量。
把沿支座移动方向的位移△L称作伸缩缝,把垂直于桥梁线的位移△d称作梁端伸缩缝。由于平行于桥端线△S的位移而使伸缩装置在平面上受扭,产生剪应力,在设计时必须注意。同时,还应注意支座的约束条件及墩台形式的不同所产生的影响。
伸缩缝装置位移量计算公式:
温度变化引起的伸长量△e:△e=ka(tmax-tin)L 温度变化引起的收缩量△S1:S1=k(tin-tmin)L(2) 混凝土收缩引起的收缩量△S2:△S2=ktsL(3) 混凝土徐变引起的收缩量△S3:△S3=k(σp*φ*β1/Ec)L(4) 总伸缩量△:△=△e+(△S1+△S2+△S3) (5) 计算公式(1)、(2)、(3)、(4)中:
k——系数,基本伸缩量以外的因素引起的伸缩量即额外伸缩量,在此按基本伸缩量的10%加以考虑,故k=1.1;
a——1.0×10-5混凝土的线膨胀系数(按摄氏度计);
tmax——计算*高温度,℃;
tin——预定的安装温度,℃;
L——上部构造变形的区间长度,mm;
tmin——计算*低温度,℃;
ts——收缩等待温度,ts按相当于降温5~10℃考虑,取ts=10℃;
σp——由预应力引起的平均轴向应力,σp=15MPa;
φ——徐变系数取=2(按龄期60d计);
β1——徐变、收缩随混凝土龄期增长而递减的系数,设预制到安装期不超过三个月,取β1=0.4;
Ec——混凝土弹性模量,取Ec=3×104MPa。
伸缩缝施工工艺
同样优良的伸缩缝装置,不同的安装质量,使用效果和耐久性会有明显差别,所以伸缩缝装置施工安装质量是保证伸缩缝装置使用效果好坏的*后*个关键环节。
伸缩缝施工安装的前期准备
1、伸缩缝组装完毕吊装时应双点起吊,尽量避免或减少弯曲变形,严禁单点起吊。再装车发运与堆放时,伸缩缝下须填厚度6cm以上的枕木,安放稳妥,防止型钢扭曲。
2、缩缝运输到安装地货场,应按桥名堆放有序,且离热源1m以上。
3、进行槽口切割与开挖。槽口应平直等宽,且符合图纸要求。为防止污染路面,切缝前应在切缝两侧外沿横桥向放置3m宽的编织布各*条,并用胶带纸固定于路面,用于临时堆放杂物。
预留槽口的验收
1、槽口沥青混凝土铺装层应切割平整,槽内的填砂及杂物应清除彻底。
2、槽口深度应满足设计图纸要求。
3、槽口单侧宽度满足设计图纸要求。
4、槽底混凝土应平整坚实,其强度应达到设计标号,若混凝土松动、掉块或强度不达标,应凿去重新浇筑。
5、预埋钢筋为Φ16钢筋,横桥向间距200mm,允许偏差15mm。对发现的预埋筋缺损部位,采用环氧树脂补埋钢筋方式整改。
6、梁端间隙应平直,无钢筋杂物,其间隙宽度由安装时气温决定,梁端间隙*般为40~80mm,若间隙>80mm,应进行整改,整改方法:当间隙>120mm,应将梁端开凿,重新浇筑达标;当80mm<间隙≤120mm时,梁端间隙的整改在伸缩缝过度段混凝土浇筑时*次同时完成。
伸缩缝施工安装就位与锚固
1、安装“J”值调整
安装“J”值须根据具体的实际施工气温计算确定,实际安装允许偏差2mm。“J”值调整用伸缩缝上的“可调式预压缩板”或“锁定板”进行,其间距为每米*只。
2、泡沫塑料模板正确安置
为防止混凝土浇筑时漏浆,影响伸缩缝正常伸缩功能,塑料模板应安置正确。
当梁端间隙≤80mm,可先将塑料板嵌入梁缝中,再在伸缩缝就位时让塑料板上端嵌入伸缩缝底部型钢内。
当梁端间隙>80mm,也可先将塑料板嵌入伸缩缝底部,再在伸缩缝就位时将塑料板下部正确嵌入梁缝内。
3、伸缩缝正确就位
A、掉起伸缩缝按设计位置正确对中,其纵向**线同桥缝**线重合,为便于操作,可沿型钢两侧拉两根直线进行校直,直线度应满足10mm/10m的要求。
B、伸缩缝标高及纵横坡定位
反挖法施工时用定制的长1.2m的定位角钢,每间隔2m固定于伸缩缝顶面。定位角钢两端用螺栓顶贴沥青路面,通过螺栓进退来调节伸缩缝的标高,用3m不锈钢检测直尺测定,使伸缩缝顶面与两侧沥青路面处于同*平面内,并使其纵坡、横坡与路面相符,其允许偏差2mm。
4、钢筋焊接与绑扎
A、伸缩缝焊固
将伸缩缝本体上的锚板、锚圈同预埋钢筋或通过Φ16横向钢筋同预埋钢筋焊接锚固。
B、Φ16横向钢筋设置
两侧槽内均设Φ16钢筋2根,除同伸缩缝锚圈连接处焊接外,其余均用铁丝绑扎固定。
为桥宽与横穿操作的便利,横向钢筋可分两段,其搭接长度应不小于350mm,且其搭接面应交错,至少要分配在两个间隔截面内。
C、焊接操作要点
本伸缩缝钢筋焊接用手工电弧焊、4.0的506电焊条。采用跳跃式焊接以防型钢变形。控制电流强度进行点焊以防止钢筋烧伤,焊脚高度≥4mm。焊接完毕立即进行现场检查,焊点应光滑无气孔、砂眼、夹渣及咬肉、裂纹现象,否则应进行整改重焊。
D、及时拆除定位角钢及预压缩板及缩定板,去除顶面定位螺栓后,用角向砂轮机磨平。
E、用高压水枪冲洗槽口内杂物,湿润槽口,确保砼有效结合。
XF 单组式桥梁伸缩缝安装
XF 型伸缩缝是在工厂制造并组装,若整条伸缩缝超长不能运输或工程需分段施工时,需在现场焊接后,再组装橡胶密封条。
1、在浇筑拟安装伸缩缝的梁体、桥台时,在端部预留符合安装尺寸的槽口,推荐尺寸见安装图。
2、设置预埋钢筋,预埋深度不小于 50cm ,并与梁体、桥台内结构钢筋接一体,间距尺寸为 20cm ,并和伸缩缝锚固件保持*致。
3、梁端间隙应不小于梁体伸长量,在预制、现浇或吊装时由桥梁工程师根据当地气温确定。
4、根据安装时气温调节伸缩缝定位尺寸“ J ”值。
5、用发泡塑料板嵌入梁端间隙内,其上部与伸缩缝钢梁内侧密合,尽量达到密封,防止浇筑混凝土 时出现漏浆、空洞等现象。
6、伸缩缝吊装就位,检查其**线与梁端缝隙**线是否重合,其顶面与路面标高是否*致,及时进行调整。
7、将预埋钢筋和伸缩缝锚固件焊接牢固,再横穿 Φ 12以上水平钢筋,用铁丝扎紧或焊实,使之构成一体。
8、立即拆除伸缩缝定位压板,錾去定位螺丝,并用角向砂轮磨去焊疤,补上油漆。
9、用胶粘纸带或木板封闭伸缩缝顶面缝口,在槽口部位浇筑 50 号混凝土,用插入式振动棒,充分振捣密实。
10、抹平混凝土过渡段表面。用直尺检查伸缩顶面、过渡段,应尽量与路面平顺。做好混凝土养护后方可通车。
伸缩缝病害
伸缩缝病害是指随着交通量的增加和汽车载重量的增大,桥面伸缩缝由于设置在梁端构造薄弱部位,直接承受车轮荷载的反复冲击作用,而且长期暴露在大自然中,所处环境比较恶劣,因材料的磨损和疲劳,以及混凝土面板或梁的结合强度不够,是桥梁结构*易产生病害,遭到破坏而又较难修复的部位。
伸缩缝病害产生的主要原因
1设计方面的原因:
1.1设计时梁端部未能慎重考虑,在反复荷载作用下,梁端破损引起伸缩装置失灵。有些桥梁结构,桥面板端部刚度不足,当桥面板受到汽车荷载作用时,因翼板较薄,横向联系较弱,导致桥面板反复变形过大;
1.2伸缩量计算不准确,没有考虑到伸缩装置安装时的实际温度对伸缩装置的影响,伸缩装置本身无法或很难调整初始位移量,选型不当,采用过小的伸缩间距,导致伸缩装置破损;
1.3*些设计是将伸缩装置的锚固件置于桥面铺装层中,与主梁(板)连接的部分很少,而且力的分布不容易传递,微小的变形可能演变成大的位移,*终导致砼粘结力的失效;
1.4使用粘结或橡胶材料等制造的新型伸缩装置,材料和结构选择不当,防水、排水设施不完善,造成锚固件受腐蚀,梁端和支座侵蚀严重;
1.5设计上未严格规定伸缩装置两侧的后浇砼和铺装层材料的选择、配合比、密实度和强度,产生不同程度的破坏,致使伸缩装置营运质量下降。
2施工方面的原因
2.1对桥梁伸缩装置施工工艺重视不够,未能严格掌握施工工艺和标准,并按安装程序及有关操作要求施工,致使伸缩装置不能正常工作
2.2伸缩装置两侧水泥砼和沥青砼铺装层结合不好,碾压不密实,容易产生开裂、脱落。加上刚柔相接,容易产生台阶,*终引起伸缩装置的破坏;
2.3后浇砼(或其他填充料)浇注不密实,时常出现蜂窝、空洞等,达不到设计的强度要求,难以承受车辆荷载的强烈冲击。有时提前开放交通,致使过渡段的锚固混凝土产生早期损伤,从而导致伸缩缝营运环境下降;
3养护不周及外界的影响
3.1 原有桥梁铺装层逐渐老化,得不到及时经常的维修,因此破坏不断扩展;
3.2落入伸缩装置的砂土、杂物未能及时认真地清扫,使原设计的伸缩量不能保证;
3.3 车辆荷载增大,交通量增加,车辆的冲击作用也随之明显变大。桥梁超载情况不能得到有效控制,超载车辆自行 上桥,对桥梁伸缩装置的有效使用和耐久性带来严重威胁;
3.4地震等其他恶劣气候条件的影响。
标签:  型钢桥梁伸缩缝图集